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Multi-set factor analysis by means of Parafac2

Alwin Stegeman*® and Tam T. T. Lam

Heymans Institute for Psychological Research, University of Groningen, The
Netherlands

We consider multi-set data consisting of Ny observations, k = 1,..., K (e.g., subject
scores), on | variables in K different samples. We introduce a factor model for the | x |
covariance matrices Xy, k = 1,.. ., K, where the common partis modelled by Parafac2 and
the unique variances Uy, k = |,.. ., K, are diagonal. The Parafac2 model implies a common
loadings matrix that is rescaled for each k, and a common factor correlation matrix. We
estimate the unique variances Uy by minimum rank factor analysis on X for each k. The
factors can be chosen orthogonal or oblique. We present a novel algorithm to estimate
the Parafac2 part and demonstrate its performance in a simulation study. Also, we fit our
model to a data set in the literature. Our model is easy to estimate and interpret. The
unique variances, the factor correlation matrix and the communalities are guaranteed to
be proper, and a percentage of explained common variance can be computed for each k.
Also, the Parafac2 part is rotationally unique under mild conditions.

I. Introduction

The goal of this paper is to introduce and demonstrate a novel model and algorithm for
exploratory factor analysis of multi-set data. In multi-set data the same variables are
observed for several different populations or subpopulations. Under the assumption that
parallel proportional latent factors underlie the observed data in each (sub)population,
exploratory factor analysis can be used to estimate factor loadings and the strengths of the
factors in each (sub)population.

Let X, (N, x J) be the centred data matrix of the sample from (sub)population &, for
k=1, ..,K. We measure the same J variables in each sample, where we have N,
observations in sample . For R underlying factors, our exploratory factor model is of
direct Parafac2 form (Harshman, 1972; Kiers, Ten Berge & Bro, 1999):

X, =F,C,B' +E,, k=1,.. K, (1)

where F, (N, X R)isthe matrix of factor scores in sample &, matrix B( J x R)isaloading
matrix common to all samples, C, (R X R) is a diagonal matrix containing the factor
strengths in sample &, and E, (V;, X J)is the unique part of sample 2. The common part of
sample & is thus modelled as F,C.B”. The loading matrix of sample & is B, = BC; and is
congruent to each B, for & # [. We assume a random factor model in which F, contains N,
realizations of random variables Fy,...,Fr that have mean zero and variance one.
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Analogously, E, contains N, realizations of random variables Eik), e E](k) that have mean
zero. The factor correlation matrix Corr(Fy,...,Fg) = @ is constant over k, and the
covariance matrix COV(E§ ),. E]( )) U, of the unique part is diagonal. Additionally, the
following assumptions on uncorrelatedness hold: Corr(F,A,E< )) = 0 for all rj,k, and
Corr(E(k E()) = Oforallk # /and all 4, j.

Under the assumptions above, X, contains N, realizations of random variables
Xik), . ( ) that satlsfgf model (1). Then the common part of the covariance matrices
X, = COV(X i ... X; ) is of indirect Parafac2 form (Harshman, 1972; Kiers, 1993):

T = BC,®C,B' +U,, k=1,... K. (2)

Matrix C, ®C;, can be seen as the factor covariance matrix in sample &, with C, containing
the factor standard deviations. We refer to (2) as the multi-set Parafac2 factor model, and fit
it to the observed covariance matrices (which we henceforth denote by X, in a slight
abuse of notation). There is scaling ambiguity between the columns of B and the diagonals
of C,. Throughout, we assume that the columns of B have sum of squares unity and the
scaling constants have been absorbed in C,.

We present a novel estimation procedure for the multi-set Parafac2 factor model (2), in
which we first estimate the unique variances Uy, by minimum rank factor analysis on each
Y, separately. This guarantees that X;, — U, is a covariance matrix (i.e., positive semi-
definite) for each k. Next, we estimate B, Cp, and ® by fitting the direct Parafac2 model to
Y., with X, — U, = Yng. Since the X, — U, are covariance matrices, we can compute
the explained common variance (ECV) for each variable and each sample separately. In
our estimation procedure, we can specify whether the factors should be orthogonal or
oblique. In the case of orthogonal factors, the model for the common part in (2) becomes
BC;B’, k = 1,...,K, which is also known as the Indscal model (Carroll & Chang, 1970).
The factors and loadings in the common part of our model (2) are rotationally unique
when K > 4 (Harshman & Lundy, 1996; Kiers et al., 1999; Ten Berge & Kiers, 1996).

Our exploratory multi-set Parafac2 factor model (2) is the factor analogue of the
simultaneous component models SCA-PF2 (for oblique components) and SCA-IND (for
orthogonal components) presented in Timmerman and Kiers (2003). The difference
between our model (2) and the SCA models is the same as the difference between
exploratory common factor analysis (EFA) and principal component analysis (PCA) for
one data matrix. The lively discussion of EFA versus PCA has been documented
extensively in the literature (see e.g., Costello & Osborne, 2005; Velicer & Jackson, 1990,
for an overview). PCA can be favoured because of its computational simplicity and
manifest component approach, whereas EFA is computationally more difficult. However,
EFA explains the correlation-producing part of the data by latent factors, while PCA is only
a data-reduction method. In a simulation study, we compare the estimation accuracy of
our multi-set Parafac2 factor model (2) to SCA-PF2 and SCA-IND. However, the choice
between a component and factor model is a fundamental one and should not be based
solely on estimation accuracy. Whenever measurement error (or a unique part in general)
should be taken into account explicitly, a factor-analytic model should be applied.
Naturally, this also applies to multi-set data.

Multi-set or multi-group factor analysis originated with Joreskog (1971) and Sorbom
(1974). These models are usually used in a confirmatory way, with chi-squared tests for
zero restrictions on the loading matrix B, or equal loadings, unique variances, or factor
means per group to assess measurement invariance (see Chen, Sousa & West, 2005, and
the references therein). Our exploratory multi-set Parafac2 factor model (2) relates to
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multi-group confirmatory factor analysis (CFA) models as EFA relates to CFA for a single
group.

There are two crucial methodological differences between our multi-set factor model
(2) and existing (exploratory or confirmatory) multi-group factor analysis models based on
Joreskog (1971) and Sorbom (1974). First, our model does not require any distributional
assumptions such as normality, while deviations from normality should be taken into
account when using chi-squared tests to compare nested models. A disadvantage of
lacking distributional assumptions is that no significance testing can be used (besides
bootstrap-like methods). Second, for common estimation methods (usually maximum
likelihood) X, — Uy, k = 1,...,K, are not necessarily covariance matrices. This implies
that a percentage of ECV cannot be computed, which is essential in determining the fit for
the common part of the data for each (sub)population k. As an example, consider the
analysis of the classical multi-group data set from Holzinger and Swineford (1939)
conducted in Joreskog (1971) and Sorbom (1974). Here, the matrices X, — U, have
negative and positive eigenvalues for all 2. Hence, they are not covariance matrices.

Our model and estimation procedure are related to the exploratory three-mode factor
model of Stegeman and Lam (2014), which is given by £ = (C© B)®(C©B)" + U.
Here, X is the full JK x JK covariance matrix, B is as above, C (K x R) contains the
diagonals of C, as rows, © denotes the column-wise Khatri-Rao product, and U is a
JK x JK diagonal matrix containing the unique variances. Instead of Parafac2, the model
for the common part is based on Candecomp/Parafac (Carroll & Chang, 1970; Harshman,
1970). This model can only be fitted to three-mode data, that is, when N, = N for all 2 and
the observed objects/units are the same in all samples. The relation with our multi-set
Parafac2 factor model is that under the three-mode factor model of Stegeman and Lam
(2014) the J x J diagonal blocks X, of X satisfy (2).

This paper is organized as follows. In Section 2 we present our algorithm for finding a
best solution of the multi-set Parafac2 factor model (2). Also, we show how the percentage
of ECV can be obtained for each variable and each sample &, and discuss criteria for model
selection. In Section 3 we assess the performance of our estimation procedure in a
simulation study, and make a comparison with the SCA models. In Section 4 we apply our
multi-set Parafac2 factor model to a data set in the literature. Section 5 contains a
discussion of our findings.

2. Multi-set factor analysis by means of Parafac2

Here, we present our algorithm to estimate the multi-set Parafac2 factor model (2), starting
with a discussion of Minimum Rank Factor Analysis (MRFA).

2.]. Minimum rank factor analysis

Here we briefly describe the MRFA method for two-mode factor analysis (Ten Berge &
Kiers, 1991). Conceptually, the factor model splits up the (centred) observed data Xinto a
common part G and a unique part W. Hence, X = G + W, with the common and unique
parts being uncorrelated (N"!G’W = 0) and the unique parts of different variables
being uncorrelated (N ~'W!W = U diagonal). It follows that the covariance matrix of the
common part is given by N7'G'G = N"'(X - W)'(X — W) = & — U, where
¥ = N XX s the data covariance matrix. In MRFA, the common part is approximated
by a small number of R factors: G ~ FB!, where F B is a best rank-R approximation of G.
This implies that B®OB is a best rank-R approximation of £ — U, and can be computed
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from the R largest eigenvalues and associated eigenvectors of £ — U (Eckart & Young,
1936). Here ® = N~ 'F’F is the factor correlation matrix. The variance of the common
part G that remains unexplained can be written as trace(N ' (G — FB”)" (G — FB')) and
is equal to the sum of the / — R smallest eigenvalues of X—U.

The MRFA method first finds U such that X—U is a covariance matrix (i.e., has
nonnegative eigenvalues) and the unexplained common variance is minimized. This is
done via an iterative algorithm due to Ten Berge and Kiers (199 D.! Next, Band ® can be
obtained via the eigendecomposition of ¥ — Uas described above. Note that the obtained
estimate of U depends on the number R of factors. The advantage of MRFA is that the
(un)explained common variance can be computed, which is the ideal measure of model fit
in the common factor model. The key constraint that must be imposed for this is that
Y — U is a covariance matrix (i.e., has non-negative eigenvalues). This is not true in
general for other factor analysis methods, such as MINRES (Harman & Jones, 1966) or
maximum likelihood (Joreskog, 1967).

2.2. Estimation procedure for the multi-set Parafac2 factor model
We present the following procedure to estimate our multi-set Parafac2 factor model (2).
We need to solve

K
min > IE — U — BGOC,B||?, (3)
Uy, C,, diagonal 1
U220, ®>0, X, —U,>0

where >0 denotes semi-positive definiteness (i.e., having non-negative eigenvalues). The
steps of our estimation procedure are as follows:

Step 1. Foreachk € {1,...,K}, use the MRFA method of Ten Berge and Kiers (1991) to
estimate the unique variances Uy, corresponding to X,

Step 2. Compute the eigenvalue decomposition or singular value decomposition
(Er — Ug) = ViC,V., with V;, having orthonormal columns, and the diagonal
matrix C, containing the eigenvalues in decreasing order. Set Y, = C,i ZVZ;.
Hence, (X, — Up) = YiYe, B =1,.. K.

Step 3. Fit the direct Parafac2 model Y, ~ F.C:B', k=1,..., K, by means of the
alternating least squares (ALS) algorithm of Kiers et al. (1999). In this step, we
run the ALS algorithm 10 times for random starting values and once for the
starting values suggested by Kiers et al. (1999) and keep the solution with the
highest fit percentage. The matrix @ is defined as Fg Fp.

Note that in step 3 a different scaling is applied to F, than in Section 1, where
N, 'F[F, = ®.

For completeness we now include a sketch of the direct Parafac2 algorithm of Kiers
et al. (1999) that is used in step 3 above. First, the Parafac2 model is slightly reformulated
as follows. Because of the constraint on F,, 2 = 1,.. ., K, there exist an Rx R matrix F and
columnwise orthonormal matrices Py, ...,Px (N, X R)such that F, = P,F & =1,.. K,
and F'F = ®. Kiers et al. (1999) proposed an ALS algorithm that alternately minimizes

! This can be obtained from http://www.gmw.rug.nl/ ~ kiers/
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Yol Ye — P,eFC,eBTH2 over Py, for fixed F, C;,,Cg, and B, for & = 1,.. ., K, and over F,
Cy,...,Ck,and B, for fixed Py, . . ., Px. The two main steps of this procedure are as follows:

Step PF2-1. Minimizing the objective function over P, subject to Png =1 is
equivalent to maximizing tr (FCkBT Y,{Pk) over Py. The solution is found
by computing the singular value decomposition SkAkT,: of FC,BTY” and
P, = TS} is the optimal solution, & = 1,....K.

Step PF2-2. Since Pp, k= 1,...K, are columnwise orthonormal, the problem of
minimizing the objective function over F,Cy, ..., Ck, and B reduces to
minimizing > &_, |[PLY, — FC,B’||?, which is equivalent to fitting the
Parafac model with R components to an R x J x K array with frontal
slices P,f Y.,k = 1,... K. Here, Kiers et al. (1999) apply one iteration of the
Parafac ALS algorithm to update each of F,Cy,...,Cgk, and B. When
orthogonal factors are required, the Parafac ALS iteration is done under the
constraint FF = I.

The ALS procedure with steps PF2-1 and PF2-2 guarantees monotonic convergence of
the Parafac2 objective function. We stop the ALS algorithm for direct Parafac2 when the
relative decrease of the Parafac2 objective function drops below 10~7.

Next, we discuss how to compute percentages of ECV for the solution provided by our
algorithm above. Due to the MRFA method of Ten Berge and Kiers (1991), all X, — U are
covariance matrices (i.e., have non-negative eigenvalues). The percentage of ECV for each
sample & can be computed as

ssq(Ye — FC,BT)

100 — 100
ssq(Yr)

. k=1,...K, (4)

where ssq(Z) denotes the sum of squares of matrix Z, and ssq(Y) = trace(X, — Ug).

Since the Parafac ALS algorithm is used in step PF2-2, it is possible to compute the ECV
due to each factor when the factors are chosen orthogonal (Stegeman & Lam, 2014). This
implies that the same is possible for the ECV in (4), where the contribution of factor r is
computed as

55q(Yi — £ ci b))

100 — 100 -
ssq(Yr)

. k=1,...K, (5)

with fﬁk) and b, denoting the rth columns of F, and B, respectively.
Denote by wy,,, the mth column of Y, — F,C.B”. We define the percentage of ECV
for each variable j and each sample & as

ssq(we,)

100 — 100 - —\"kI)
(Ze = Ur)yy

()

where (X, — Upg) ; is the estimated communality of variable j in sample &.

Note that our estimation procedure does not minimize (3) completely, since the
estimation of U, by MRFA does not take into account the Parafac2 model form for
Y, — Upg.Instead, MRFA assumes a separate R-factor model for each sample k. This is now
approximated by the rank-R indirect Parafac2 model for the common part of each sample.

If the unique variances Uy, k& = 1,.. K, are deleted, then we obtain a new algorithm
(steps 2 and 3) for indirect Parafac2 that is simpler and more efficient than the existing
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indirect Parafac2 algorithm of Kiers (1993). See Lam (2015) for a simulation study
comparing our procedure and Kiers (1993) for the indirect Parafac2 model.

2.3. Model selection

Before fitting the multi-set Parafac2 factor model to a data set, the number of factors R must
be chosen and whether to use orthogonal or oblique factors. The following guidelines for
model selection are based on Timmerman and Kiers (2003) who consider SCA models.
The three criteria that play a role in model selection are model fit, stability of the solution,
and interpretability of the solution. For the multi-set Parafac2 factor model the ECV can be
computed for each sample &, which provides natural measures of model fit. Note,
however, that the ECV does not need to increase for each sample (or variable) when the
number of factors R is increased. This is because the MRFA estimates of the unique
variances Uy, depend on R. Hence, caution is needed when using ECV values to select the
number of factors R.

To assess stability of the solution we may use split-half analysis. This involves randomly
splitting each sample & into two halves and fitting the model to each half. The mean
absolute deviations of the two obtained estimates of B and C;, can then be compared by
their mean absolute deviation (after taking permutational and reflectional freedom into
account; see Section 2.4). Applying this procedure 50 times, say, yields a mean measure of
model stability. Note, however, that exploratory factor analysis requires a very large
sample size, a clear factor structure, strong factors, and large communalities for good split-
half stability (Osborne & Fitzpatrick, 2012). We expect that the same will hold for multi-set
factor analysis, including a clear structure in the weights C,,.

The final criterion is interpretability of the solution, that is, of the common loading
matrix B, the weights C,, for each sample &, and the factor correlations in ®. This may be a
subjective criterion, however. Ideally, our model has a small number of factors but still fits
the data well, and yields an interpretable solution that is stable in the split-half analysis. In
Section 4 we will apply these criteria of model selection in our analysis of a data set in the
literature.

2.4. Parafac2 uniqueness properties

An indirect Parafac2 solution (B, Cy,...,Ck,®) is called ‘essentially unique’ if, for any
other solution (B, Cy, . . ., Cg, ®) with BC,®C,B’ = BC,®C,B’ & = 1,.. K, there exist
a permutation matrix P and diagonal scaling matrices T,, T;, T with T,T,;Te = Iy such
that (Kiers et al., 1999):

B = BPT,,
() Cp = 4 P"C,PT,, where 4, = *1,fork =1,..., K,
(iiD) ® = TP ' ®PTy.

Throughout, we scale Parafac2 solutions such that @ has a diagonal of 1s, and B has
columns with sum of squares unity. For the case of orthogonal factors (® = Iy) the
indirect Parafac2 model is BCiBT, and each entry of C, is identified up to sign only.
Indirect Parafac2 uniqueness is equivalent to direct Parafac2 uniqueness under mild
conditions (Kiers et al., 1999). The sign indeterminacy via A, in (i) may influence
interpretation of the solution of the direct Parafac2 model (Helwig, 2013). As mentioned
in Section 1, a Parafac2 solution generally is essentially unique for K > 4 (Harshman &
Lundy, 1996; Kiers et al., 1999; Ten Berge & Kiers, 1996).
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3. Simulations

3.1. Comparing the multi-set factor and component models

Here we assess the performance of the estimation procedure in Section 2.2, and compare
it to the SCA-PF2 and SCA-IND models. We consider four scenarios: Either a multi-set
Parafac2 factor model or an SCA model is true in the population, and either a multi-set
Parafac2 factor model or an SCA model is estimated. For the population models, we
consider the following true parameter values. We set J = 6, K = 5, and R = 2. The true
matrices B,C, and ® are

0.80 0.10 0.65 0.10
0.10 0.83 0.10 0.63
B _ | 083 0.10 B, — | 001 0.10
! 0.10 079 |’ 2 0.10 0.70 |’
0.83 0.10 0.64 0.10
0.10 0.82 0.10 0.62
1.00 0.80 1.00 0.50
0.80 1.20 0.50 1.20
C,=|119 081 ]|, C.=]|119 o051,
0.81 1.18 0.51 1.18
1.20 0.79 1.20 0.59

and

1 —040
®1_<—0.40 1 )

where C contains the diagonals of Cg, 2 = 1,...,5, as rows. Hence, for C we use true
matrices C; and C,, and for B we use true matrices B; and B,. We consider both
orthogonal factors/components (® = I,) and oblique factors/components
(@ = D).

After the true B,C,® are chosen, the population covariance matrices are
Y, = BC,®C,B", £=1,.,K, when SCA is true, and X, = BC,®C,B’ + U,
k =1,...,K, when the multi-set Parafac2 factor model is true. In the latter case, the
unique variances Uy, are determined such that the X, have 1s on their diagonals. For the
sample sizes, we take Ny = 100, N; = 200, N3 = 100, Ny = 300, and N5 = 500. The
data are generated as

(k) k) 1/2 B
X(Nlexf) - Z(ka])(zk) / , kR=1,..,K, (7)

where ZEZL <J) has random entries from the standard normal distribution, and X, is as
above. For each choice of true model, we generate 100 data sets as in (7) and fit the multi-
set Parafac2 factor model to the sample covariance matrix, and the SCA model to the
generated data themselves.

We compare the true values of B and C to their estimates by means of congruence
coefficients for each column of B and C. For two vectors h; and h,, the congruence
coefficient is given by (Tucker, 1951)
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hlh;,
\/h'h;\/h’h, '

Taking into account the permutational and reflectional freedom (see Section 2.4), we
take the maximum of the absolute values of the congruence coefficients between
estimated columns and one true column as a recovery measure. In Tables 1-4 we
report the mean and standard deviation of the congruence coefficients of the columns
of B and C for each case. When the multi-set Parafac2 factor model is the true model,
the average communalities are also given for each & and each case. We estimate each
true model using both orthogonal and oblique factors. For orthogonal estimation, each
entry of C, is unique up to sign only (see Section 2.4). Therefore, we take the
absolute value of the estimate of C when using orthogonal estimation. For oblique
estimation, the estimated factor correlations are often small. Also here we take the
absolute value of the estimate of C. This yields larger congruence coefficients between
the true C and its estimate.

For oblique estimation, the number of cases with diverging components in the
Candecomp/Parafac ALS step PF2-2 is also reported. We define two components as
diverging if their congruence coefficient is smaller than —0.90. If diverging components
occur, then a best-fitting Candecomp/Parafac model probably does not exist (Krijnen,
Dijkstra & Stegeman, 2008; Stegeman, 2012). Cases of diverging components are not
included in the computation of the congruence coefficients.

The recovery of the true loadings is very good in general, and somewhat better for C
than for B in most cases. As possible explanations we propose the fact that B is larger than
C,and Bis linked toall K = 5 samples simultaneously, while each row of Cis linked to one
sample only. This could make the estimation of C more robust compared to B. The
influence of the size of the communalities is as expected, with smaller communalities
resulting in poorer recovery due to a worse signal-to-noise ratio (where the unique part is
also considered as noise). In general, orthogonal estimation yields better recovery results
than oblique estimation, also when the true model has oblique factors/components. As
mentioned above, in that case the estimated factor/component correlation is often very
small, which makes orthogonal estimation more suitable.

‘When the multi-set Parafac2 factor model (PF2F) is the true model (in Tables 1 and 2),
estimation by SCA results in better recovery of B for oblique estimation. On the other
hand, estimation by PF2F results in better recovery of C. When SCA is the true model (in
Tables 3 and 4), recovery of Cis nearly identical for both estimation methods. Recovery of
B is also nearly identical but better for SCA in some cases of oblique estimation.

When PF2F is used as the estimation method (Tables 1 and 4), the recovery of C; is
equal for both true models but is slightly better for C, when SCA is the true model. The
recovery of B is better when SCA is the true model. A possible explanation for this may be
the following. When SCA is the true model, estimation by PF2F results in capturing part of
the sampling error in the unique variances. Since the sampling error is white noise,
estimation by PF2F may yield more robust results compared to PF2F being the true model.
In the latter case the true unique variances are unequal which may imply a bigger
challenge for the PF2F algorithm. When SCA is used as the estimation method (in Tables 2
and 3), recovery of C is better when SCA is the true model while recovery of B is better for
oblique estimation when PF2F is the true model. This is surprising and we do not have an
explanation for this.
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Table 3. Recovery results for the SCA model with R = 2 (true and estimated model)

C B (0] Estimation Congr. coeff. B Congr. coeff. C Div.
C B I Orth. 1.00 (0.000  1.00 (0.00)  1.00(0.00) 1.00 (0.00) -
C, B L Oblique 0.98 (0.05) 0.99(0.04) 1.00(0.00) 1.00 (0.00) 2
C, B, I Orth. 1.00 (0.00)  1.00(0.00) 1.00(0.00)  1.00 (0.00) -
CG B I Oblique 0.99 (0.03) 0.99(0.04) 1.00(0.00) 1.00 (0.00) 6
C, B ®; Orth. 0.98 (0.01) 0.98(0.01) 1.00(0.00) 1.00 (0.00) -
C, B, (O} Oblique 0.97 (0.03) 0.96(0.05) 1.00(0.00) 1.00 (0.00) 5
Ci B, ®; Orth 0.98 (0.01) 0.98(0.01) 1.00(0.00) 1.00(0.00) -
C, B, ®@®; Oblique 0.96 (0.05) 0.96 (0.06)  1.00(0.00) 1.00 (0.00) 10
C; B L Orth. 1.00 (0.000  1.00 (0.00)  1.00(0.00) 1.00 (0.00) -
C; B L Oblique 0.96(0.09) 0.97(0.07) 0.99©.01) 0.99 (0.02) 5
C; B, I Orth. 1.00 (0.00)  1.00(0.00) 1.00(0.00)  1.00 (0.00) -
C; B, I Oblique 0.97(0.08) 0.98(0.05) 1.00(0.01) 0.99 (0.01) 5
C; B ®; Orth. 0.99 (0.00)  0.99(0.00) 1.00 (0.00)  1.00 (0.00) -
C: B ®, Oblique 0.97 (0.06)  0.96(0.05) 1.00(0.01) 0.99 (0.01) 2
C; B, @, Orth. 0.98 (0.000  0.99 (0.00)  1.00 (0.00)  1.00 (0.00) -
C; B, @ Oblique 0.96 (0.06) 0.97(0.06) 1.00(0.01) 0.99 (0.01) 6

Table 4. Recovery results for the SCA model as true model and the multi-set Parafac2 factor model
as estimated model, and R = 2

C B (] Estimation Congr. coeff. B Congr. coeff. C Div.
CG B I Orth. 0.99 (0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
C B L Oblique 0.98 (0.04) 0.99(0.03) 1.00(0.00) 1.00 (0.00) 10
C, B, L Orth. 1.00 (0.00)  1.00(0.00)  1.00(0.00)  1.00 (0.00) -
C, B, I Oblique 0.98 (0.05) 0.99(0.049) 1.00(0.00) 1.00 (0.00) 6
C;, By ®@®; Orth 0.98 (0.01) 0.98(0.01) 1.00(0.00) 1.00(0.00) -
C; B; ®; Oblique 0.97 (0.0  0.96(0.04) 1.00(0.00)  1.00 (0.00) 16
C; B, ®; Orth 0.98 (0.01) 0.98(0.01) 1.00(0.00) 1.00(0.00) -
C; B, ®; Oblique 0.97 (0.03) 0.97(0.04) 1.00(0.00) 1.00 (0.00) 10
C, B, I, Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) —
C; B L Oblique 0.96(0.08) 0.97(0.05) 0.99(0.01) 0.99(0.0D) 6
C; B, L Orth. 1.00 (0.00)  1.00 (0.00)  1.00(0.00)  1.00 (0.00) -
C: B, L Oblique 0.97(0.07) 0.98(0.05) 1.00(0.01) 0.99(0.0D 7
C; By ®; Orth 0.99 (0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) -
C; B; ®; Oblique 0.97 (0.05)  0.96(0.05) 1.00(0.01) 0.99 (0.0 5
C; B, @®; Orth 0.99 (0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) -
C, B, ®; Oblique 0.97 (0.04) 0.97(0.05 1.00(.01) 1.00(0.0D) 6

Simulation studies suggest that diverging components are more likely to occur in data
with more white noise (Stegeman, 2012). In the simulations this corresponds to SCA being
the true model (in Tables 3 and 4), which indeed features more cases of diverging
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components. Diverging components are not encountered in Table 2, when PF2F is the
true model and SCA the estimated model.

In terms of computation time, the PF2F algorithm is much faster than the SCA
algorithm since the latter is applied to much bigger data matrices (N, x 6vs. 6 x 6 for
PF2F). When the true and estimated models are the same, computation time for SCA is
about 2.5 times longer on average for orthogonal estimation and about 9.9 times longer on
average for oblique estimation.

To sum up, the recovery results of SCA and PF2F are quite similar in general, with SCA
being slightly more robust on average. However, we do not see this as a recommendation
to use SCA. The choice between a component and factor model is a fundamental one and
should not be based solely on estimation accuracy.

3.2. Simulations for the multi-set Parafac2 factor model with R = 3
Here we consider the case of R = 3 factors, with true and estimated model equal to PF2F.
We take ] = 6, K = 5, N, as above, and true matrices

0.90 0.10 0.40
0.10 0.41 0.89 1.00 0.80 0.45

0.93 0.40 0.10 0.80 0.39 1.00
' ' ' 1.00 0.40 0.81

0.10 0.90 0.42
0.41 0.10 0.90 0.43 0.80 1.00

1 —-0.40 —0.30
®, = | —0.40 1 0.30
-0.30 0.30 1

We use convergence criterion 10~ in the direct Parafac2 algorithm, which yields slightly
better recovery results than 1077 for oblique estimation. The recovery results can be
found in Table 5.

As for R = 2, recovery is better for orthogonal estimation, and recovery is better for C
than for B. Although recovery is slightly worse than for R = 2, the results are still
acceptable. Interestingly, the results for oblique estimation can be improved by using 100
Parafac ALS iterations in step PF2-2 instead of just one such iteration. For this modified
direct Parafac2 algorithm the recovery results for B are 0.96 (0.04), 0.95 (0.06), and 0.97
(0.03) for ® = Iz and oblique estimation, and 0.96 (0.02), 0.92 (0.12), and 0.96 (0.05) for
® = @, and oblique estimation.

4. Application of the multi-set Parafac2 factor model

We analyse real multi-set data from Meijer, Egberink, Emons and Sijtsma (2008)
concerning the Self-Perception Profile for Children (SPPC). The SPPC is used to
investigate the judgement of children between 8 and 12 years of age about their own
functioning in several specific domains and their global self-worth. The SPPC consists of
six subscales each consisting of six items scored on a 4-point scale. Five of the six subscales
represent specific domains of self-concept: Scholastic competence (SC), social
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acceptance (SA), athletic competence (AC), physical appearance (PA), and behavioural
conduct (BC). The sixth scale measures global self-worth (GS), which is a more general
concept.

Meijer et al. (2008) showed that there are differences in the item response theory
model fit for children between age 8 and 9 and for children between age 10 and 13, and
between boys and girls. These differences may be due to young children finding the
questions too difficult or not yet having a differentiated self-concept. Also, girls may have a
more differentiated self-concept than boys. Therefore, we divide this sample into K = 4
groups: Young girls (YoGi), with N; = 147 and age 8-9 years; young boys (YoBo), with
N, = 119 and age 8-9 years; old girls (OIGi), with N3 = 196 and age 10-13 years; and
old boys (OIBo), with Ny = 149 and age 10-13 years.

We use the sum-scores on the six subscales as observed variables. The four 6 x 6
covariance matrices are given in the Appendix. We apply our multi-set Parafac2 factor
model (2) to this data set. First, we select an appropriate number of factors R and make a
choice between using orthogonal and oblique factors. Table 6 shows the ECV for each
groupkforR =2,R = 3,andR = 4. From R = 2to R = 3 the ECV increases from 84% on
average to 93% on average, with not much difference between orthogonal and oblique
estimation. For R = 4 the ECV is differently distributed over the four groups and there is
not much improvement overall compared to R = 3. As mentioned in Section 2.3, ECV
does not need to increase for all groups when R is increased. This is indeed not the case
when going from R = 3 to R = 4, although the sum of the ECV values is nearly the same.
Based on the above, we consider the R = 2 and R = 3 solutions only.

The oblique solution for R = 2 is nearly the same as the orthogonal solution for R = 2,
with the estimated factor correlation being only —.09. Hence, for R = 2 we prefer
orthogonal factors because of parsimony. For R = 3 and oblique factors we obtain a factor
correlation of .79. This solution is discarded due to lack of interpretability. The two
remaining optionsare R = 2and R = 3, both with orthogonal factors. Split-half analyses of
these solutions do not produce good results (with mean absolute deviation for two
estimates of B being 0.20 for R = 2) due to the relatively small sample size for each group
k. Below, we present the R = 2 solution and briefly discuss the R = 3 solution.

The results for R = 2 orthogonal factors are as follows:

0.22 048 \ SC

0.34 058 | SA 6.19 2.97\ YoGi

B— 0.22 0.62 | AC Cc— 4.54 5.15 | YoBo (8)
0.58 —0.04 | PA’ 6.77 2.84 | OIGi’
030 0.21 | BC 4.26 2.48 /) OIBo

0.61 0.01 GS

where B has column sums of squares equal to 1, and the loadings whose absolute values
are larger than or equal to 0.4 are in bold font.

The unique variances Uy, are given in Table 7. A unique variance of zero is a boundary
solution. This may also occur for other models and estimation methods (Bentler & Lee,
1979), or when Heywood cases are suppressed. The zero and small unique variances for
GS are not surprising, since this scale may be considered as a summary of the other five
scales. As such, it has no specific part and a very large common part.

The ECV percentages for each variable j, each group &, and due to each factor are given
in Table 8. The solution (8) with R = 2 orthogonal factors can be interpreted as follows.
Factor 1 is a strong general factor with highest loadings for PA and GS and is stronger for
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Table 6. Percentages of explained common variance for sample & for the SPPC data set for models
with different numbers of factors, and orthogonal or oblique factors

R=2 R=3 R=4

Orth. Oblique Orth. Oblique Orth. Oblique
YoGi 88.5 88.7 95.4 95.4 97.9 97.5
YoBo 83.1 83.4 93.4 93.3 858 83.2
OIGi 85.0 85.1 94.8 94.8 93.1 96.7
OIBo 80.3 80.3 88.3 89.0 88.5 84.6

Table 7. Unique variances for variable j and sample & for the SPPC data set and R = 2 factors

SC SA AC PA BC GS
YoGi 10.48 5.11 9.14 6.69 7.37 0.67
YoBo 7.64 8.37 3.03 7.07 7.69 0
OIGi 10.22 9.54 0 6.52 4.41 0
OIBo 8.12 0 8.47 6.24 8.39 0

the girls than for the boys. Hence, factor 1 captures differences in the variability of PA and
GS judgements between boys and girls. The weaker factor 2 is a combination of SC, SA, and
AC, and is much stronger for young boys than for the other groups. The young boys
apparently show more variability on these scales than the other groups. This may be due to
their lack of a coherent self-perception. The percentages of ECVs for group OlBo are rather
low for the sum-scores SC and AC. Compared to other groups, the percentage of ECV of
YoBo is smallest for factor 1 but largest for factor 2.

Next, we briefly discuss the solution with R = 3 orthogonal factors. The ECV is above
70% for every variable j and group &, which is somewhat better than for R = 2 (Table 8).
The obtained loadings and weights are

0.30 0.06 0.61 \ SC
030 035 045 | SA 4.96 4.86 3.30\ YoGi
B— —-0.05 0.66 0.57 |AC C— 4.15 3.22 5.28 | YoBo )
0.53 049 —0.13 | PA’ 486 599 2.01 | OIGi~
038 0.10 0.30 | BC 4.04 220 2.00,/ OIBo
0.63 044 -0.03/ GS

The first two factors are strongest in terms of ECV and are similar to each other, with the
largest differences being the loadings on AC. These factors have larger weights for girls

Table 8. Percentages of explained common variance for variable j and sample &, and due to each
factor for the SPPC data set and R = 2 orthogonal factors

SC SA AC PA BC GS Factor 1 Factor 2
YoGi 80.6 82.7 81.7 94.2 72.3 97.1 68.3 20.3
YoBo 80.1 62.7 85.4 925 73.0 94.7 49.9 33.2
OIGi 75.4 90.4 74.9 94.2 61.6 96.0 67.4 17.6
OlBo 54.2 77.1 51.5 97.9 70.8 96.7 59.2 21.1
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than for boys and they resemble the strong factor in the R = 2 solution (8). The third factor
resembles the weaker factor in the R = 2 solution. In terms of interpretability, the R = 2
solution (8) is clearer. This comes at the cost of lower ECV for some variables and groups.

Finally, we present the solution for SCA-IND with R = 2. We fit the SCA-IND model to
the centred SPPC sumscores for each group. We obtain

0.15 0.73 \ SC

036 046 | SA 6.15 4.30\ YoGi
1025 042 [AC | 536 4.94 | YoBo

B= 0.66 —0.16 | PA’ c= 6.42 396 | OIGi " (10)
030 0.23 | BC 5.15 3.76 ) OlBo

051 0.07 / GS

The SCA-IND solution (10) is similar to (8), but the factor structure is less clear. Compared
to (8) the differences between large and small loadings in B are smaller for SA, AC, BC, and
GS. Also, the differences in weights are smaller. The larger loadings for SC and PA are due
to these variables having the largest variances in the four groups (Appendix). In the multi-
set factor model this is mediated by the unique variances. This illustrates the benefit of
using the multi-set factor model in which most non-systematic variation is captured by the
unique variances, while in the SCA model this variation influences the estimated loadings
and weights.

5. Discussion

In this paper, we have presented an exploratory multi-set factor model with common
covariance part of indirect Parafac2 form. To estimate our multi-set Parafac2 factor model
we use MRFA to obtain the unique variances Uy, and a new indirect Parafac2 algorithm to
estimate the common loading matrix B, factor strengths C, for each sample &, and the
factor correlation matrix ®. The matrices X, — U, are guaranteed to be covariance
matrices due to the MRFA algorithm. Therefore, percentages of ECV can be computed for
each sample &, and for each variable in each sample k. For other factor methods of multi-
set data analysis, such as multi-group exploratory or confirmatory factor analysis, it is not
guaranteed that such ECVs can be computed.

The simulation study shows that our relatively simple estimation procedure for the
multi-set Parafac2 factor model performs very well in retrieving underlying factors when
the data are randomly sampled with true covariance matrices X, — U, satisfying the
indirect Parafac2 model. The recovery is better when we use orthogonal factors.

In the simulation study we also compared the performance of our multi-set Parafac2
factor model to the corresponding component SCA models. It was found that estimation
accuracy is similar for the multi-set component and factor models, with the SCA models
being slightly more robust in general. However, the choice between a component and
factor model is a fundamental one and should not be based solely on estimation accuracy.
The distinction between common and unique parts is a key property of factor models,
while component models are basically used for data reduction (Costello & Osborne, 2005).

The results of the application of our multi-set Parafac2 factor model confirm the
considerations of Meijer et al. (2008) on differences between young children and old
children, and between girls and boys when they judge their own functioning in several
specific domains and their global self-worth. Our results show that girls have higher
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variability in their judgement on physical appearance and global self-worth than boys.
Also, young boys have higher variability in their judgements on scholastic competence,
social acceptance, and athletic competence. The solution of the corresponding SCA
model shows less difference between small and large loadings and weights, as a result of
fitting the model to the observed data and not only to the systematic (common) part of the
data. This shows the value of a factor model over a component model in practice.
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Appendix

Multi-set factor analysis by means of Parafac2
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The covariance matrices for the four groups in the SPPC data set of Meijer et al. (2008) are

as follows:

X =

X =

Y=

14.38
4.97
3.02
2.20
3.29
4.31

17.68
5.77
6.89
2.27
5.94
4.38

13.82
3.88
4.37
3.91
3.59
4.52

12.64
4.45
0.77
3.46
3.73
2.79

4.97
14.90
5.40
4.40
3.35
6.60

5.77
15.17
6.24
4.08
4.24
6.20

3.88
15.23
6.15

7.72

4.58

7.70

4.45
12.42
4.72
4.66
3.42
4.68

3.02
5.40
13.50
4.44
3.26
4.66

6.89
6.24
12.51
2.46
3.52
2.56

4.37
6.15
13.36
7.30
2.60
5.91

0.77
4.72
10.78
2.13
0.81
2.37

2.20
4.40
4.44
20.11
5.29
12.18

2.27
4.68
2.46
14.80
3.16
8.11

391

7.72

7.30
19.62
5.64
12.49

3.46
4.66
2.13
13.61
4.62
7.51

3.29
3.35
3.26
5.29
11.80
6.11

5.94
4.24
3.52
3.16
12.31
4.36

3.59
4.58
2.60
5.64
9.65
6.09

3.73

3.42

0.81

4.62
12.33
4.45

4.31
6.60
4.066
12.18
6.11
13.91

4.38
6.20
2.56
8.11
4.30
10.52

4.52
7.70
5.91
12.49 |’
6.09

12.95

2.79
4.08
2.37
7.51 |’
4.45

8.10

N—



