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Multi-set factor analysis by means of Parafac2
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Netherlands

We consider multi-set data consisting of Nk observations, k = 1,. . ., K (e.g., subject

scores), on J variables in K different samples. We introduce a factor model for the J 9 J

covariancematricesRk, k = 1,. . ., K, where the common part is modelled by Parafac2 and

the unique variancesUk, k = 1,. . ., K, are diagonal. The Parafac2model implies a common

loadings matrix that is rescaled for each k, and a common factor correlation matrix. We

estimate the unique variancesUk by minimum rank factor analysis on Rk for each k. The

factors can be chosen orthogonal or oblique. We present a novel algorithm to estimate

the Parafac2 part and demonstrate its performance in a simulation study. Also, we fit our

model to a data set in the literature. Our model is easy to estimate and interpret. The

unique variances, the factor correlation matrix and the communalities are guaranteed to

be proper, and a percentage of explained common variance can be computed for each k.

Also, the Parafac2 part is rotationally unique under mild conditions.

1. Introduction

The goal of this paper is to introduce and demonstrate a novel model and algorithm for

exploratory factor analysis of multi-set data. In multi-set data the same variables are

observed for several different populations or subpopulations. Under the assumption that

parallel proportional latent factors underlie the observed data in each (sub)population,
exploratory factor analysis can be used to estimate factor loadings and the strengths of the

factors in each (sub)population.

Let XkðNk � JÞ be the centred data matrix of the sample from (sub)population k, for

k = 1,. . .,K. We measure the same J variables in each sample, where we have Nk

observations in sample k. For R underlying factors, our exploratory factor model is of

direct Parafac2 form (Harshman, 1972; Kiers, Ten Berge & Bro, 1999):

Xk ¼ FkCkB
T þ Ek; k ¼ 1; . . .;K ; ð1Þ

whereFk (Nk � R) is thematrix of factor scores in sample k, matrixB ( J 9 R) is a loading

matrix common to all samples, Ck (R 9 R) is a diagonal matrix containing the factor

strengths in sample k, andEk (Nk � J) is the unique part of sample k. The commonpart of

sample k is thus modelled as FkCkB
T . The loading matrix of sample k is Bk ¼ BCk and is

congruent to eachBl fork 6¼ l.We assume a random factormodel inwhichFk containsNk

realizations of random variables F1; . . .; FR that have mean zero and variance one.
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Analogously, Ek containsNk realizations of random variables E
ðkÞ
1 ; . . .;E

ðkÞ
J that have mean

zero. The factor correlation matrix CorrðF1; . . .; FRÞ ¼ U is constant over k, and the

covariancematrixCovðEðkÞ
1 ; . . .;E

ðkÞ
J Þ ¼ Uk of the unique part is diagonal. Additionally, the

following assumptions on uncorrelatedness hold: CorrðFr;EðkÞ
j Þ ¼ 0 for all r,j,k, and

CorrðEðkÞ
i ;E

ðlÞ
j Þ ¼ 0 for all k 6¼ l and all i, j.

Under the assumptions above, Xk contains Nk realizations of random variables

X
ðkÞ
1 ; . . .;X

ðkÞ
J that satisfy model (1). Then the common part of the covariance matrices

Rk ¼ CovðXðkÞ
1 ; . . .;X

ðkÞ
J Þ is of indirect Parafac2 form (Harshman, 1972; Kiers, 1993):

Rk ¼ BCkUCkB
T þ Uk; k ¼ 1; . . .:;K : ð2Þ

MatrixCkUCk can be seen as the factor covariancematrix in sample k, withCk containing

the factor standard deviations.We refer to (2) as themulti-set Parafac2 factormodel, andfit

it to the observed covariance matrices (which we henceforth denote by Rk, in a slight
abuse of notation). There is scaling ambiguity between the columns ofB and the diagonals

of Ck. Throughout, we assume that the columns of B have sum of squares unity and the

scaling constants have been absorbed in Ck.

We present a novel estimation procedure for themulti-set Parafac2 factormodel (2), in

which we first estimate the unique variancesUk byminimum rank factor analysis on each

Rk separately. This guarantees that Rk � Uk is a covariance matrix (i.e., positive semi-

definite) for each k. Next, we estimate B,Ck, andΦ by fitting the direct Parafac2model to

Yk, with Rk � Uk ¼ YT
kYk. Since the Rk � Uk are covariance matrices, we can compute

the explained common variance (ECV) for each variable and each sample separately. In

our estimation procedure, we can specify whether the factors should be orthogonal or

oblique. In the case of orthogonal factors, the model for the common part in (2) becomes

BC2
kB

T , k = 1,. . .,K, which is also known as the Indscal model (Carroll & Chang, 1970).

The factors and loadings in the common part of our model (2) are rotationally unique

when K ≥ 4 (Harshman & Lundy, 1996; Kiers et al., 1999; Ten Berge & Kiers, 1996).

Our exploratory multi-set Parafac2 factor model (2) is the factor analogue of the

simultaneous component models SCA-PF2 (for oblique components) and SCA-IND (for
orthogonal components) presented in Timmerman and Kiers (2003). The difference

between our model (2) and the SCA models is the same as the difference between

exploratory common factor analysis (EFA) and principal component analysis (PCA) for

one data matrix. The lively discussion of EFA versus PCA has been documented

extensively in the literature (see e.g., Costello & Osborne, 2005; Velicer & Jackson, 1990,

for an overview). PCA can be favoured because of its computational simplicity and

manifest component approach, whereas EFA is computationally more difficult. However,

EFA explains the correlation-producing part of the data by latent factors, while PCA is only
a data-reduction method. In a simulation study, we compare the estimation accuracy of

our multi-set Parafac2 factor model (2) to SCA-PF2 and SCA-IND. However, the choice

between a component and factor model is a fundamental one and should not be based

solely on estimation accuracy.Whenever measurement error (or a unique part in general)

should be taken into account explicitly, a factor-analytic model should be applied.

Naturally, this also applies to multi-set data.

Multi-set or multi-group factor analysis originated with J€oreskog (1971) and S€orbom
(1974). These models are usually used in a confirmatory way, with chi-squared tests for
zero restrictions on the loading matrix B, or equal loadings, unique variances, or factor

means per group to assess measurement invariance (see Chen, Sousa & West, 2005, and

the references therein). Our exploratory multi-set Parafac2 factor model (2) relates to
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multi-group confirmatory factor analysis (CFA) models as EFA relates to CFA for a single

group.

There are two crucial methodological differences between our multi-set factor model

(2) and existing (exploratory or confirmatory)multi-group factor analysismodels based on
J€oreskog (1971) and S€orbom (1974). First, our model does not require any distributional

assumptions such as normality, while deviations from normality should be taken into

account when using chi-squared tests to compare nested models. A disadvantage of

lacking distributional assumptions is that no significance testing can be used (besides

bootstrap-like methods). Second, for common estimation methods (usually maximum

likelihood) Rk � Uk, k = 1,. . .,K, are not necessarily covariance matrices. This implies

that a percentage of ECV cannot be computed, which is essential in determining the fit for

the common part of the data for each (sub)population k. As an example, consider the
analysis of the classical multi-group data set from Holzinger and Swineford (1939)

conducted in J€oreskog (1971) and S€orbom (1974). Here, the matrices Rk � Uk have

negative and positive eigenvalues for all k. Hence, they are not covariance matrices.

Our model and estimation procedure are related to the exploratory three-mode factor

model of Stegeman and Lam (2014), which is given by R ¼ ðC� BÞUðC� BÞT þ U.
Here, Σ is the full JK 9 JK covariance matrix, B is as above, C (K 9 R) contains the

diagonals of Ck as rows, ⊙ denotes the column-wise Khatri–Rao product, and U is a

JK 9 JK diagonal matrix containing the unique variances. Instead of Parafac2, the model
for the common part is based on Candecomp/Parafac (Carroll & Chang, 1970; Harshman,

1970). Thismodel can only be fitted to three-mode data, that is, whenNk ¼ N for all k and

the observed objects/units are the same in all samples. The relation with our multi-set

Parafac2 factor model is that under the three-mode factor model of Stegeman and Lam

(2014) the J 9 J diagonal blocks Rk of Σ satisfy (2).

This paper is organized as follows. In Section 2 we present our algorithm for finding a

best solution of themulti-set Parafac2 factormodel (2). Also,we showhow thepercentage

of ECV can be obtained for each variable and each sample k, and discuss criteria for model
selection. In Section 3 we assess the performance of our estimation procedure in a

simulation study, andmake a comparisonwith the SCAmodels. In Section 4we apply our

multi-set Parafac2 factor model to a data set in the literature. Section 5 contains a

discussion of our findings.

2. Multi-set factor analysis by means of Parafac2

Here,wepresent our algorithm to estimate themulti-set Parafac2 factormodel (2), starting

with a discussion of Minimum Rank Factor Analysis (MRFA).

2.1. Minimum rank factor analysis

Here we briefly describe the MRFA method for two-mode factor analysis (Ten Berge &

Kiers, 1991). Conceptually, the factormodel splits up the (centred) observed dataX into a
common part G and a unique partW. Hence, X = G + W, with the common and unique

parts being uncorrelated (N�1GTW ¼ O) and the unique parts of different variables

being uncorrelated (N�1WTW ¼ U diagonal). It follows that the covariancematrix of the

common part is given by N�1GTG ¼ N�1ðX � WÞT ðX � WÞ ¼ R � U, where

R ¼ N�1XTX is the data covariance matrix. In MRFA, the common part is approximated

by a small number of R factors:G � FBT , where FBT is a best rank-R approximation ofG.
This implies that BUBT is a best rank-R approximation of Σ � U, and can be computed
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from the R largest eigenvalues and associated eigenvectors of Σ � U (Eckart & Young,

1936). Here U ¼ N�1FTF is the factor correlation matrix. The variance of the common

partG that remains unexplained can bewritten as traceðN�1ðG � FBT ÞT ðG � FBT ÞÞ and
is equal to the sum of the J � R smallest eigenvalues of Σ�U.

The MRFA method first finds U such that Σ�U is a covariance matrix (i.e., has

nonnegative eigenvalues) and the unexplained common variance is minimized. This is

done via an iterative algorithm due to Ten Berge and Kiers (1991).1 Next, B andΦ can be

obtained via the eigendecomposition ofΣ � U as described above.Note that the obtained

estimate of U depends on the number R of factors. The advantage of MRFA is that the

(un)explained common variance canbe computed,which is the idealmeasure ofmodel fit

in the common factor model. The key constraint that must be imposed for this is that

Σ � U is a covariance matrix (i.e., has non-negative eigenvalues). This is not true in
general for other factor analysis methods, such as MINRES (Harman & Jones, 1966) or

maximum likelihood (J€oreskog, 1967).

2.2. Estimation procedure for the multi-set Parafac2 factor model

We present the following procedure to estimate our multi-set Parafac2 factor model (2).

We need to solve

min
Uk;Ck diagonal

Uk � 0; U� 0; Rk � Uk � 0

XK
k¼1

kRk � Uk � BCkUCkB
Tk2; ð3Þ

where ≥0 denotes semi-positive definiteness (i.e., having non-negative eigenvalues). The

steps of our estimation procedure are as follows:

Step 1. For each k 2 {1,. . .,K}, use the MRFAmethod of Ten Berge and Kiers (1991) to

estimate the unique variances Uk corresponding to Rk.

Step 2. Compute the eigenvalue decomposition or singular value decomposition

ðRk � UkÞ ¼ VkCkV
T
k , withVk having orthonormal columns, and the diagonal

matrix Ck containing the eigenvalues in decreasing order. Set Yk ¼ C
1=2
k VT

k .

Hence, ðRk � UkÞ ¼ YT
kYk, k = 1,. . .K.

Step 3. Fit the direct Parafac2 model Yk � FkCkB
T , k = 1,. . ., K, by means of the

alternating least squares (ALS) algorithm of Kiers et al. (1999). In this step, we

run the ALS algorithm 10 times for random starting values and once for the

starting values suggested by Kiers et al. (1999) and keep the solution with the

highest fit percentage. The matrix Φ is defined as FT
kFk.

Note that in step 3 a different scaling is applied to Fk than in Section 1, where

N�1
k FT

kFk ¼ U.

For completeness we now include a sketch of the direct Parafac2 algorithm of Kiers

et al. (1999) that is used in step 3 above. First, the Parafac2 model is slightly reformulated
as follows. Because of the constraint on Fk, k = 1,. . ., K, there exist an R9Rmatrix F and

columnwise orthonormal matrices P1; . . .;PK (Nk � R) such that Fk ¼ PkF, k = 1,. . .,K,
and FTF ¼ U. Kiers et al. (1999) proposed an ALS algorithm that alternately minimizes

1 This can be obtained from http://www.gmw.rug.nl/� kiers/
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P
k kYk � PkFCkB

Tk2 over Pk for fixed F, C1; ;CK , and B, for k = 1,. . ., K, and over F,
C1; . . .;CK , andB, for fixedP1; . . .;PK . The twomain steps of this procedure are as follows:

Step PF2-1. Minimizing the objective function over Pk subject to PT
kPk ¼ IR is

equivalent to maximizing tr FCkB
TYT

kPk

� �
over Pk. The solution is found

by computing the singular value decomposition SkDkT
T
k of FCkB

TYT
k , and

Pk ¼ TkS
T
k is the optimal solution, k = 1,. . .,K.

Step PF2-2. Since Pk, k = 1,. . .,K, are columnwise orthonormal, the problem of

minimizing the objective function over F;C1; . . .;CK , and B reduces to
minimizing

PK
k¼ 1 kPT

kYk � FCkB
Tk2, which is equivalent to fitting the

Parafac model with R components to an R 9 J 9 K array with frontal

slicesPT
kYk,k = 1,. . .,K. Here, Kiers et al. (1999) apply one iteration of the

Parafac ALS algorithm to update each of F;C1; . . .;CK , and B. When

orthogonal factors are required, the Parafac ALS iteration is done under the

constraint FTF ¼ IR.

The ALS procedure with steps PF2-1 and PF2-2 guarantees monotonic convergence of

the Parafac2 objective function. We stop the ALS algorithm for direct Parafac2 when the
relative decrease of the Parafac2 objective function drops below 10�7.

Next, we discuss how to compute percentages of ECV for the solution provided by our

algorithm above. Due to theMRFAmethod of Ten Berge andKiers (1991), allRk � Uk are

covariancematrices (i.e., have non-negative eigenvalues). The percentage of ECV for each

sample k can be computed as

100� 100 � ssqðYk � FkCkB
T Þ

ssqðYkÞ ; k ¼ 1; . . .;K ; ð4Þ

where ssq(Z) denotes the sum of squares of matrix Z, and ssqðYkÞ ¼ traceðRk � UkÞ.
Since the Parafac ALS algorithm is used in step PF2-2, it is possible to compute the ECV

due to each factor when the factors are chosen orthogonal (Stegeman & Lam, 2014). This
implies that the same is possible for the ECV in (4), where the contribution of factor r is

computed as

100� 100 � ssqðYk � f ðkÞr ckrb
T
r Þ

ssqðYkÞ ; k ¼ 1; . . .;K ; ð5Þ

with f ðkÞr and br denoting the rth columns of Fk and B, respectively.
Denote by wk;m the mth column of Yk � FkCkB

T . We define the percentage of ECV

for each variable j and each sample k as

100� 100 � ssq wk;j

� �
Rk � Ukð Þjj

; ð6Þ

where ðRk � UkÞjj is the estimated communality of variable j in sample k.

Note that our estimation procedure does not minimize (3) completely, since the

estimation of Uk by MRFA does not take into account the Parafac2 model form for

Rk � Uk. Instead,MRFA assumes a separateR-factormodel for each sample k. This is now
approximated by the rank-R indirect Parafac2model for the common part of each sample.

If the unique variances Uk, k = 1,. . .,K, are deleted, then we obtain a new algorithm

(steps 2 and 3) for indirect Parafac2 that is simpler and more efficient than the existing
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indirect Parafac2 algorithm of Kiers (1993). See Lam (2015) for a simulation study

comparing our procedure and Kiers (1993) for the indirect Parafac2 model.

2.3. Model selection

Before fitting themulti-set Parafac2 factormodel to a data set, the numberof factorsRmust

be chosen andwhether to use orthogonal or oblique factors. The following guidelines for

model selection are based on Timmerman and Kiers (2003) who consider SCA models.

The three criteria that play a role in model selection are model fit, stability of the solution,

and interpretability of the solution. For themulti-set Parafac2 factormodel the ECV can be

computed for each sample k, which provides natural measures of model fit. Note,

however, that the ECV does not need to increase for each sample (or variable) when the
number of factors R is increased. This is because the MRFA estimates of the unique

variances Uk depend on R. Hence, caution is needed when using ECV values to select the

number of factors R.

To assess stability of the solutionwemay use split-half analysis. This involves randomly

splitting each sample k into two halves and fitting the model to each half. The mean

absolute deviations of the two obtained estimates of B and Ck can then be compared by

their mean absolute deviation (after taking permutational and reflectional freedom into

account; see Section 2.4). Applying this procedure 50 times, say, yields ameanmeasure of
model stability. Note, however, that exploratory factor analysis requires a very large

sample size, a clear factor structure, strong factors, and large communalities for good split-

half stability (Osborne&Fitzpatrick, 2012).Weexpect that the samewill hold formulti-set

factor analysis, including a clear structure in the weights Ck.

The final criterion is interpretability of the solution, that is, of the common loading

matrixB, theweightsCk for each sample k, and the factor correlations inΦ. This may be a

subjective criterion, however. Ideally, ourmodel has a small number of factors but still fits

the data well, and yields an interpretable solution that is stable in the split-half analysis. In
Section 4wewill apply these criteria of model selection in our analysis of a data set in the

literature.

2.4. Parafac2 uniqueness properties

An indirect Parafac2 solution ðB;C1; . . .;CK ;UÞ is called ‘essentially unique’ if, for any

other solution ð�B; �C1; . . .; �CK ; �UÞwithBCkUCkB
T ¼ �B�Ck

�U�Ck
�BT , k = 1,. . .,K, there exist

a permutation matrix P and diagonal scaling matrices Ta, Td , TU with TaTdTU ¼ IR such
that (Kiers et al., 1999):

(i) �B ¼ BPTa,

(ii) �Ck ¼ kkPTCkPTd , where kk ¼ 	1, for k = 1,. . ., K,
(iii) �U ¼ TUP

TUPTU:

Throughout, we scale Parafac2 solutions such that Φ has a diagonal of 1s, and B has

columns with sum of squares unity. For the case of orthogonal factors (U ¼ IR) the
indirect Parafac2 model is BC2

kB
T , and each entry of Ck is identified up to sign only.

Indirect Parafac2 uniqueness is equivalent to direct Parafac2 uniqueness under mild

conditions (Kiers et al., 1999). The sign indeterminacy via kk in (ii) may influence

interpretation of the solution of the direct Parafac2 model (Helwig, 2013). As mentioned

in Section 1, a Parafac2 solution generally is essentially unique for K ≥ 4 (Harshman &

Lundy, 1996; Kiers et al., 1999; Ten Berge & Kiers, 1996).
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3. Simulations

3.1. Comparing the multi-set factor and component models
Herewe assess the performance of the estimation procedure in Section 2.2, and compare

it to the SCA-PF2 and SCA-IND models. We consider four scenarios: Either a multi-set

Parafac2 factor model or an SCA model is true in the population, and either a multi-set

Parafac2 factor model or an SCA model is estimated. For the population models, we

consider the following true parameter values. We set J = 6, K = 5, and R = 2. The true

matrices B,C, and Φ are

B1 ¼

0:80 0:10
0:10 0:83
0:83 0:10
0:10 0:79
0:83 0:10
0:10 0:82

0
BBBBBB@

1
CCCCCCA
; B2 ¼

0:65 0:10
0:10 0:63
0:61 0:10
0:10 0:70
0:64 0:10
0:10 0:62

0
BBBBBB@

1
CCCCCCA
;

C1 ¼

1:00 0:80
0:80 1:20
1:19 0:81
0:81 1:18
1:20 0:79

0
BBBB@

1
CCCCA; C2 ¼

1:00 0:50
0:50 1:20
1:19 0:51
0:51 1:18
1:20 0:59

0
BBBB@

1
CCCCA;

and

U1 ¼ 1 �0:40
�0:40 1

� �
;

where C contains the diagonals of Ck, k = 1,. . .,5, as rows. Hence, for C we use true

matrices C1 and C2, and for B we use true matrices B1 and B2. We consider both

orthogonal factors/components (U ¼ I2) and oblique factors/components
(U ¼ U1).

After the true B,C,Φ are chosen, the population covariance matrices are

Rk ¼ BCkUCkB
T , k = 1,. . .,K, when SCA is true, and Rk ¼ BCkUCkB

T þ Uk,

k = 1,. . .,K, when the multi-set Parafac2 factor model is true. In the latter case, the

unique variances Uk are determined such that the Rk have 1s on their diagonals. For the

sample sizes, we take N1 ¼ 100, N2 ¼ 200, N3 ¼ 100, N4 ¼ 300, and N5 ¼ 500. The

data are generated as

X
ðkÞ
ðNk�JÞ ¼ Z

ðkÞ
ðNk�JÞ Rkð Þ1=2; k ¼ 1; . . .;K ; ð7Þ

where Z
ðkÞ
ðNk � JÞ has random entries from the standard normal distribution, and Rk is as

above. For each choice of true model, we generate 100 data sets as in (7) and fit the multi-

set Parafac2 factor model to the sample covariance matrix, and the SCA model to the

generated data themselves.

We compare the true values of B and C to their estimates by means of congruence

coefficients for each column of B and C. For two vectors h1 and h2, the congruence

coefficient is given by (Tucker, 1951)

Multi-set factor analysis by means of Parafac2 7



hT
1h2ffiffiffiffiffiffiffiffiffiffiffi

hT
1h1

q ffiffiffiffiffiffiffiffiffiffiffi
hT
2h2

q :

Taking into account the permutational and reflectional freedom (see Section 2.4), we

take the maximum of the absolute values of the congruence coefficients between

estimated columns and one true column as a recovery measure. In Tables 1–4 we

report the mean and standard deviation of the congruence coefficients of the columns

of B and C for each case. When the multi-set Parafac2 factor model is the true model,

the average communalities are also given for each k and each case. We estimate each

true model using both orthogonal and oblique factors. For orthogonal estimation, each
entry of Ck is unique up to sign only (see Section 2.4). Therefore, we take the

absolute value of the estimate of C when using orthogonal estimation. For oblique

estimation, the estimated factor correlations are often small. Also here we take the

absolute value of the estimate of C. This yields larger congruence coefficients between

the true C and its estimate.

For oblique estimation, the number of cases with diverging components in the

Candecomp/Parafac ALS step PF2-2 is also reported. We define two components as

diverging if their congruence coefficient is smaller than �0.90. If diverging components
occur, then a best-fitting Candecomp/Parafac model probably does not exist (Krijnen,

Dijkstra & Stegeman, 2008; Stegeman, 2012). Cases of diverging components are not

included in the computation of the congruence coefficients.

The recovery of the true loadings is very good in general, and somewhat better for C
than forB in most cases. As possible explanations we propose the fact that B is larger than

C, andB is linked to allK = 5 samples simultaneously,while each rowofC is linked to one

sample only. This could make the estimation of C more robust compared to B. The
influence of the size of the communalities is as expected, with smaller communalities
resulting in poorer recovery due to a worse signal-to-noise ratio (where the unique part is

also considered as noise). In general, orthogonal estimation yields better recovery results

than oblique estimation, also when the true model has oblique factors/components. As

mentioned above, in that case the estimated factor/component correlation is often very

small, which makes orthogonal estimation more suitable.

When the multi-set Parafac2 factor model (PF2F) is the true model (in Tables 1 and 2),

estimation by SCA results in better recovery of B for oblique estimation. On the other

hand, estimation by PF2F results in better recovery of C. When SCA is the true model (in
Tables 3 and 4), recovery ofC is nearly identical for both estimationmethods. Recovery of

B is also nearly identical but better for SCA in some cases of oblique estimation.

When PF2F is used as the estimation method (Tables 1 and 4), the recovery of C1 is

equal for both true models but is slightly better for C2 when SCA is the true model. The

recovery of B is better when SCA is the true model. A possible explanation for this may be

the following.When SCA is the truemodel, estimation by PF2F results in capturing part of

the sampling error in the unique variances. Since the sampling error is white noise,

estimation by PF2Fmay yieldmore robust results compared to PF2F being the truemodel.
In the latter case the true unique variances are unequal which may imply a bigger

challenge for the PF2F algorithm.When SCA is used as the estimationmethod (in Tables 2

and 3), recovery ofC is better when SCA is the truemodel while recovery ofB is better for

oblique estimation when PF2F is the true model. This is surprising and we do not have an

explanation for this.
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Simulation studies suggest that diverging components are more likely to occur in data

withmorewhite noise (Stegeman, 2012). In the simulations this corresponds to SCAbeing

the true model (in Tables 3 and 4), which indeed features more cases of diverging

Table 3. Recovery results for the SCA model with R = 2 (true and estimated model)

C B Φ Estimation Congr. coeff. B Congr. coeff. C Div.

C1 B1 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C1 B1 I2 Oblique 0.98 (0.05) 0.99 (0.04) 1.00 (0.00) 1.00 (0.00) 2

C1 B2 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C1 B2 I2 Oblique 0.99 (0.03) 0.99 (0.04) 1.00 (0.00) 1.00 (0.00) 6

C1 B1 U1 Orth. 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) –
C1 B1 U1 Oblique 0.97 (0.03) 0.96 (0.05) 1.00 (0.00) 1.00 (0.00) 5

C1 B2 U1 Orth. 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) –
C1 B2 U1 Oblique 0.96 (0.05) 0.96 (0.06) 1.00 (0.00) 1.00 (0.00) 10

C2 B1 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B1 I2 Oblique 0.96 (0.09) 0.97 (0.07) 0.99 (0.01) 0.99 (0.02) 5

C2 B2 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B2 I2 Oblique 0.97 (0.08) 0.98 (0.05) 1.00 (0.01) 0.99 (0.01) 5

C2 B1 U1 Orth. 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B1 U1 Oblique 0.97 (0.06) 0.96 (0.05) 1.00 (0.01) 0.99 (0.01) 2

C2 B2 U1 Orth. 0.98 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B2 U1 Oblique 0.96 (0.06) 0.97 (0.06) 1.00 (0.01) 0.99 (0.01) 6

Table 4. Recovery results for the SCA model as true model and the multi-set Parafac2 factor model

as estimated model, and R = 2

C B Φ Estimation Congr. coeff. B Congr. coeff. C Div.

C1 B1 I2 Orth. 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C1 B1 I2 Oblique 0.98 (0.04) 0.99 (0.03) 1.00 (0.00) 1.00 (0.00) 10

C1 B2 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C1 B2 I2 Oblique 0.98 (0.05) 0.99 (0.04) 1.00 (0.00) 1.00 (0.00) 6

C1 B1 U1 Orth. 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) –
C1 B1 U1 Oblique 0.97 (0.04) 0.96 (0.04) 1.00 (0.00) 1.00 (0.00) 16

C1 B2 U1 Orth. 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) –
C1 B2 U1 Oblique 0.97 (0.03) 0.97 (0.04) 1.00 (0.00) 1.00 (0.00) 10

C2 B1 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B1 I2 Oblique 0.96 (0.08) 0.97 (0.05) 0.99 (0.01) 0.99 (0.01) 6

C2 B2 I2 Orth. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B2 I2 Oblique 0.97 (0.07) 0.98 (0.05) 1.00 (0.01) 0.99 (0.01) 7

C2 B1 U1 Orth. 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B1 U1 Oblique 0.97 (0.05) 0.96 (0.05) 1.00 (0.01) 0.99 (0.01) 5

C2 B2 U1 Orth. 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) –
C2 B2 U1 Oblique 0.97 (0.04) 0.97 (0.05) 1.00 (0.01) 1.00 (0.01) 6
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components. Diverging components are not encountered in Table 2, when PF2F is the

true model and SCA the estimated model.

In terms of computation time, the PF2F algorithm is much faster than the SCA

algorithm since the latter is applied to much bigger data matrices (Nk � 6 vs. 6 9 6 for
PF2F). When the true and estimated models are the same, computation time for SCA is

about 2.5 times longer on average for orthogonal estimation and about 9.9 times longer on

average for oblique estimation.

To sum up, the recovery results of SCA and PF2F are quite similar in general, with SCA

being slightly more robust on average. However, we do not see this as a recommendation

to use SCA. The choice between a component and factor model is a fundamental one and

should not be based solely on estimation accuracy.

3.2. Simulations for the multi-set Parafac2 factor model with R = 3

Here we consider the case of R = 3 factors, with true and estimated model equal to PF2F.

We take J = 6, K = 5, Nk as above, and true matrices

B ¼

0:90 0:10 0:40
0:10 0:41 0:89
0:93 0:40 0:10
0:40 0:91 0:10
0:10 0:90 0:42
0:41 0:10 0:90

0
BBBBBB@

1
CCCCCCA
; C ¼

1:00 0:80 0:45
0:80 0:39 1:00
0:41 1:00 0:79
1:00 0:40 0:81
0:43 0:80 1:00

0
BBBB@

1
CCCCA;

U1 ¼
1 �0:40 �0:30

�0:40 1 0:30
�0:30 0:30 1

0
@

1
A:

We use convergence criterion 10�9 in the direct Parafac2 algorithm, which yields slightly

better recovery results than 10�7 for oblique estimation. The recovery results can be

found in Table 5.

As for R = 2, recovery is better for orthogonal estimation, and recovery is better for C
than for B. Although recovery is slightly worse than for R = 2, the results are still
acceptable. Interestingly, the results for oblique estimation can be improved by using 100

Parafac ALS iterations in step PF2-2 instead of just one such iteration. For this modified

direct Parafac2 algorithm the recovery results for B are 0.96 (0.04), 0.95 (0.06), and 0.97

(0.03) forU ¼ I3 and oblique estimation, and 0.96 (0.02), 0.92 (0.12), and 0.96 (0.05) for

U ¼ U1 and oblique estimation.

4. Application of the multi-set Parafac2 factor model

We analyse real multi-set data from Meijer, Egberink, Emons and Sijtsma (2008)

concerning the Self-Perception Profile for Children (SPPC). The SPPC is used to

investigate the judgement of children between 8 and 12 years of age about their own

functioning in several specific domains and their global self-worth. The SPPC consists of

six subscales eachconsisting of six items scoredon a 4-point scale. Five of the six subscales

represent specific domains of self-concept: Scholastic competence (SC), social

12 Alwin Stegeman and Tam T. T. Lam
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acceptance (SA), athletic competence (AC), physical appearance (PA), and behavioural

conduct (BC). The sixth scale measures global self-worth (GS), which is a more general

concept.

Meijer et al. (2008) showed that there are differences in the item response theory
model fit for children between age 8 and 9 and for children between age 10 and 13, and

between boys and girls. These differences may be due to young children finding the

questions too difficult or not yet having a differentiated self-concept. Also, girlsmay have a

more differentiated self-concept than boys. Therefore, we divide this sample into K = 4

groups: Young girls (YoGi), with N1 ¼ 147 and age 8–9 years; young boys (YoBo), with

N2 ¼ 119 and age 8–9 years; old girls (OlGi), with N3 ¼ 196 and age 10–13 years; and

old boys (OlBo), with N4 ¼ 149 and age 10–13 years.

We use the sum-scores on the six subscales as observed variables. The four 6 9 6
covariance matrices are given in the Appendix. We apply our multi-set Parafac2 factor

model (2) to this data set. First, we select an appropriate number of factors R and make a

choice between using orthogonal and oblique factors. Table 6 shows the ECV for each

group k for R = 2, R = 3, and R = 4. From R = 2 to R = 3 the ECV increases from 84% on

average to 93% on average, with not much difference between orthogonal and oblique

estimation. For R = 4 the ECV is differently distributed over the four groups and there is

not much improvement overall compared to R = 3. As mentioned in Section 2.3, ECV

does not need to increase for all groups when R is increased. This is indeed not the case
when going from R = 3 to R = 4, although the sum of the ECV values is nearly the same.

Based on the above, we consider the R = 2 and R = 3 solutions only.

The oblique solution for R = 2 is nearly the same as the orthogonal solution for R = 2,

with the estimated factor correlation being only �.09. Hence, for R = 2 we prefer

orthogonal factors because of parsimony. ForR = 3 and oblique factorswe obtain a factor

correlation of .79. This solution is discarded due to lack of interpretability. The two

remaining options areR = 2 andR = 3, bothwith orthogonal factors. Split-half analyses of

these solutions do not produce good results (with mean absolute deviation for two
estimates of B being 0.20 for R = 2) due to the relatively small sample size for each group

k. Below, we present the R = 2 solution and briefly discuss the R = 3 solution.

The results for R = 2 orthogonal factors are as follows:

B ¼

0:22 0:48
0:34 0:58
0:22 0:62
0:58 �0:04
0:30 0:21
0:61 0:01

0
BBBBBB@

1
CCCCCCA

SC

SA

AC

PA

BC

GS

; C ¼
6:19 2:97
4:54 5:15
6:77 2:84
4:26 2:48

0
BB@

1
CCA

YoGi

YoBo

OlGi

OlBo

; ð8Þ

where B has column sums of squares equal to 1, and the loadings whose absolute values

are larger than or equal to 0.4 are in bold font.

The unique variances Uk are given in Table 7. A unique variance of zero is a boundary

solution. This may also occur for other models and estimation methods (Bentler & Lee,

1979), or when Heywood cases are suppressed. The zero and small unique variances for

GS are not surprising, since this scale may be considered as a summary of the other five

scales. As such, it has no specific part and a very large common part.
The ECVpercentages for each variable j, each group k, and due to each factor are given

in Table 8. The solution (8) with R = 2 orthogonal factors can be interpreted as follows.

Factor 1 is a strong general factor with highest loadings for PA and GS and is stronger for
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the girls than for the boys. Hence, factor 1 captures differences in the variability of PA and

GS judgements betweenboys and girls. Theweaker factor 2 is a combination of SC, SA, and

AC, and is much stronger for young boys than for the other groups. The young boys

apparently showmore variability on these scales than the other groups. Thismay bedue to

their lack of a coherent self-perception. Thepercentages of ECVs for groupOlBo are rather

low for the sum-scores SC and AC. Compared to other groups, the percentage of ECV of

YoBo is smallest for factor 1 but largest for factor 2.

Next, we briefly discuss the solution with R = 3 orthogonal factors. The ECV is above
70% for every variable j and group k, which is somewhat better than for R = 2 (Table 8).

The obtained loadings and weights are

B ¼

0:30 0:06 0:61
0:30 0:35 0:45
�0:05 0:66 0:57
0:53 0:49 �0:13
0:38 0:10 0:30
0:63 0:44 �0:03

0
BBBBBB@

1
CCCCCCA

SC
SA

AC

PA

BC

GS

; C ¼
4:96 4:86 3:30
4:15 3:22 5:28
4:86 5:99 2:01
4:04 2:20 2:00

0
BB@

1
CCA

YoGi

YoBo

OlGi

OlBo

: ð9Þ

The first two factors are strongest in terms of ECV and are similar to each other, with the

largest differences being the loadings on AC. These factors have larger weights for girls

Table 7. Unique variances for variable j and sample k for the SPPC data set and R = 2 factors

SC SA AC PA BC GS

YoGi 10.48 5.11 9.14 6.69 7.37 0.67

YoBo 7.64 8.37 3.03 7.07 7.69 0

OlGi 10.22 9.54 0 6.52 4.41 0

OlBo 8.12 0 8.47 6.24 8.39 0

Table 8. Percentages of explained common variance for variable j and sample k, and due to each

factor for the SPPC data set and R = 2 orthogonal factors

SC SA AC PA BC GS Factor 1 Factor 2

YoGi 80.6 82.7 81.7 94.2 72.3 97.1 68.3 20.3

YoBo 80.1 62.7 85.4 92.5 73.0 94.7 49.9 33.2

OlGi 75.4 90.4 74.9 94.2 61.6 96.0 67.4 17.6

OlBo 54.2 77.1 51.5 97.9 70.8 96.7 59.2 21.1

Table 6. Percentages of explained common variance for sample k for the SPPC data set for models

with different numbers of factors, and orthogonal or oblique factors

R = 2 R = 3 R = 4

Orth. Oblique Orth. Oblique Orth. Oblique

YoGi 88.5 88.7 95.4 95.4 97.9 97.5

YoBo 83.1 83.4 93.4 93.3 85.8 83.2

OlGi 85.0 85.1 94.8 94.8 93.1 96.7

OlBo 80.3 80.3 88.3 89.0 88.5 84.6
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than for boys and they resemble the strong factor in theR = 2 solution (8). The third factor

resembles the weaker factor in the R = 2 solution. In terms of interpretability, the R = 2

solution (8) is clearer. This comes at the cost of lower ECV for some variables and groups.

Finally, we present the solution for SCA-IND with R = 2. We fit the SCA-INDmodel to
the centred SPPC sumscores for each group. We obtain

B ¼

0:15 0:73
0:36 0:46
0:25 0:42
0:66 �0:16
0:30 0:23
0:51 0:07

0
BBBBBB@

1
CCCCCCA

SC

SA
AC

PA

BC

GS

; C ¼
6:15 4:30
5:36 4:94
6:42 3:96
5:15 3:76

0
BB@

1
CCA

YoGi
YoBo

OlGi

OlBo

: ð10Þ

The SCA-IND solution (10) is similar to (8), but the factor structure is less clear. Compared
to (8) the differences between large and small loadings inB are smaller for SA, AC, BC, and

GS. Also, the differences in weights are smaller. The larger loadings for SC and PA are due

to these variables having the largest variances in the four groups (Appendix). In themulti-

set factor model this is mediated by the unique variances. This illustrates the benefit of

using themulti-set factormodel inwhichmost non-systematic variation is captured by the

unique variances, while in the SCAmodel this variation influences the estimated loadings

and weights.

5. Discussion

In this paper, we have presented an exploratory multi-set factor model with common

covariance part of indirect Parafac2 form. To estimate our multi-set Parafac2 factor model

we use MRFA to obtain the unique variances Uk and a new indirect Parafac2 algorithm to

estimate the common loading matrix B, factor strengths Ck for each sample k, and the
factor correlation matrix Φ. The matrices Rk � Uk are guaranteed to be covariance

matrices due to the MRFA algorithm. Therefore, percentages of ECV can be computed for

each sample k, and for each variable in each sample k. For other factor methods of multi-

set data analysis, such as multi-group exploratory or confirmatory factor analysis, it is not

guaranteed that such ECVs can be computed.

The simulation study shows that our relatively simple estimation procedure for the

multi-set Parafac2 factor model performs very well in retrieving underlying factors when

the data are randomly sampled with true covariance matrices Rk � Uk satisfying the
indirect Parafac2 model. The recovery is better when we use orthogonal factors.

In the simulation study we also compared the performance of our multi-set Parafac2

factor model to the corresponding component SCA models. It was found that estimation

accuracy is similar for the multi-set component and factor models, with the SCA models

being slightly more robust in general. However, the choice between a component and

factor model is a fundamental one and should not be based solely on estimation accuracy.

The distinction between common and unique parts is a key property of factor models,

while componentmodels are basically used for data reduction (Costello &Osborne, 2005).
The results of the application of our multi-set Parafac2 factor model confirm the

considerations of Meijer et al. (2008) on differences between young children and old

children, and between girls and boys when they judge their own functioning in several

specific domains and their global self-worth. Our results show that girls have higher
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variability in their judgement on physical appearance and global self-worth than boys.

Also, young boys have higher variability in their judgements on scholastic competence,

social acceptance, and athletic competence. The solution of the corresponding SCA

model shows less difference between small and large loadings and weights, as a result of
fitting themodel to the observed data and not only to the systematic (common) part of the

data. This shows the value of a factor model over a component model in practice.
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Appendix

The covariancematrices for the four groups in the SPPC data set ofMeijer et al. (2008) are
as follows:

R1 ¼

14:38 4:97 3:02 2:20 3:29 4:31
4:97 14:90 5:40 4:40 3:35 6:60
3:02 5:40 13:50 4:44 3:26 4:66
2:20 4:40 4:44 20:11 5:29 12:18
3:29 3:35 3:26 5:29 11:80 6:11
4:31 6:60 4:66 12:18 6:11 13:91

0
BBBBBB@

1
CCCCCCA
;

R2 ¼

17:68 5:77 6:89 2:27 5:94 4:38
5:77 15:17 6:24 4:68 4:24 6:20
6:89 6:24 12:51 2:46 3:52 2:56
2:27 4:68 2:46 14:80 3:16 8:11
5:94 4:24 3:52 3:16 12:31 4:36
4:38 6:20 2:56 8:11 4:36 10:52

0
BBBBBB@

1
CCCCCCA
;

R3 ¼

13:82 3:88 4:37 3:91 3:59 4:52
3:88 15:23 6:15 7:72 4:58 7:70
4:37 6:15 13:36 7:30 2:60 5:91
3:91 7:72 7:30 19:62 5:64 12:49
3:59 4:58 2:60 5:64 9:65 6:09
4:52 7:70 5:91 12:49 6:09 12:95

0
BBBBBB@

1
CCCCCCA
;

R4 ¼

12:64 4:45 0:77 3:46 3:73 2:79
4:45 12:42 4:72 4:66 3:42 4:68
0:77 4:72 10:78 2:13 0:81 2:37
3:46 4:66 2:13 13:61 4:62 7:51
3:73 3:42 0:81 4:62 12:33 4:45
2:79 4:68 2:37 7:51 4:45 8:10

0
BBBBBB@

1
CCCCCCA
:
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